D- Block Elements

d - Block elements

3	4	5	6	7	8	9	10	11	12
21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	Fe 55.85	27 Co 58.93	28 Ni 58.68	29 Cu 63.55	30 Zn 65.39
39 Y 88.91	40 Zr 91.22	41 Nb 92,97	42 Mo 92.94	43 TC (98)	44 Ru 701.07	45 Rh 102.91	46 Pd 706.42	47 Ag 107.87	48 Cd 712,41
57-71 57 La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 r 792.22	78 Pt 195.08	79 Au 796.97	80 Hg 200.59
AC (227)	104 Rf (267)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	Uun	Uuu	Uub

For Under graduate Student

By: Dr. Monal Singh PPN (PG) College Kanpur

THE DEDICABLE TABLE

	1 IA						THE	PE	RIO	DIC	CTA	BLE						18 VIIIA
1	1 1.008 Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	4.00 Helium
2	Li 3 6,94 Lithium	Be 4 9.01 Beryllum		1 1.008 Hydrogen	- ATC	MBOL OMIC NUME OMIC WEIGH ME				():	= ESTIMAT	TES	B 5 10.81 Seron	6 12.01 Carbon	7 14.01 Nitrogen	8 16.00 Degen	F 9 19.00 Fluorine	Ne 10 20.18 Neon
3	Na 11 22.99 Sodium	Mg 12 24.31 Magnesium	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 26.98 Aluminum	\$1 14 28.09 Silicon	P 15 30.97 Phosphorus	\$ 16 32.07 Suttur	C1 17 35.45 Chlorine	18 39.95 Argon
4	19 39.10 Potassium	20 40.08 Calcium	Sc 21 44.96 Scandium	Ti 22 47.88 Titanium	23 50.94 Vanadium	24 52.00 Chromium	Mn 25 54.94 Manganese	Fe 26 55.85 Iron	27 58.93 Cobalt	Ni 28 58.69 Nickel	29 63.55 Copper	Zn 30 65.39 Znc	Ga 31 69.72 Gallium	Ge 32 72.61 Germanium	AS 33 74.92 Arsenic	Se 34 78.96 Selenium	Br 35 79.90 Bromine	36 83.80 Kryptor
5	Rb 37 85.47 Rubidum	Sr 38 87.62 Strontium	39 88.91 Yttrium	Zr 40 91.22 Zrconium	Nb 41 92.91 Nictium	Mo 42 95.94 Molybdenum	Tc 43 (97.9) Technetium	Ru 44 101.07 Ruthenium	Rh 45 102.91 Rhodium	Pd 46 106.42 Palladium	Ag 47 107.87 Silver	Cd 48 112.41 Cadmium	49 114.82 Indiam	50 118.71 Tin	5b 51 121.76 Antimony	Te 52 127.60 Tellurium	53 126.90 lodine	54 131.25 Xenon
6	Cs 55 132.91 Cesium	Ba 56 137.33 Barium	57 138.91 Lanthanum	Hf 72 178.49 Hattsium	Ta 73 180.95 Tantalam	74 183.85 Tungsten	Re 75 186.21 Rhemum	Os 76 190.2 Osmium	Ir 77 192.22 Iridium	Pt 78 195.08 Plateaum	79 196.97 Gold	Hg 80 200.59 Mercury	T1 81 204.38 Thallum	Pb 82 207.2 Lead	Bi 83 208.98 Bismuth	Po 84 (209) Polonium	At 85 (210) Assatine	86 (222) Radon
7	Fr 87 223.02 Francium	Ra 88 226.03 Radium	A.C 89 227.03 Actinium	Rf 104 (261) Referencement	105 (262) Dubnium	Sg 106 (263) Seaborgium	Bh 107 (262) Bohmuni	HS 108 (265) Hessium	Mt 109 (266) Meltnenum	Unnamed Discovery 110 Nov. 1994	Unnamed Discovery 111 Nov. 1994	Unnamed Discovery 112 1996		Unnamed Discovery 114 1999		Unnumed Discovery 116 1999		Unname Discover 118 1999
	ALKALI METALS	ALKALI EARTH METALS													-		HALOGENS	NOBLE
	HAYDEN			LANTHANIDES	Ce 58 140.12 Cerum	Pr 59 140.91 Praeseodymium	Nd 80 144.24 Neodymium	Pm 61 (145) Promethium	5m 62 150.36 Samarium	Ett 63 152.97 Europium	Gd 64 157.25 Gadolinium	Tb 65 158.93 Terbium	Dy 66 162.50 Dysprosium	Ho 67 164.93 Holmium	Er 68 167.26 Erbium	Tm 69 168.93 Thulum	70 173.04 Ytterbium	Tu 71 174.90 Listetius
	MCNEIL				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

SPECIALTY

232.04

Thorium

92

238.03

Uranium

91

231.04

Protaciolum

93

237.05

94

(240)

Philomum

95

243.06

Americium

(247)

Curlum

97

(248)

Berkelium

(251)

99

252.08

Einsteinium

100

257.10

Fermium

101

(257)

102

259.10 262.11 Nobelium Lawrencium

103

ACTINIDES

www.hmpublishing.com

O Hayden-McNeil Specialty Products

DEFINITION:-

- The elements of periodic table belonging to group 3 to 12 are known as d Block elements
- ➤D- block elements lie in between S & P block elements & also referred as transition elements

TRANSITION ELEMENTS

Defined as in completely filled d orbitals in its ground state, having partially filled (n-I) d orbital

Electronic Configuration

Electronic Arrangement

Element	Z				3d			45
Sc	21	[Ar]	1					小小
Ti	22	[Ar]	1	1				14
V	23	[Ar]	1	1	1			1
Cr	24	[Ar]	个	个	个	个	1	1
Mn	25	[Ar]	1	个	个	1	1	^↓
Fe	26	[Ar]	1	个	介	个	1	1
Co	27	[Ar]	ΛΨ	ΛΨ	个	1	1	小小
Ni	28	[Ar]	14	14	14	个	1	14
Cu	29	[Ar]	ΛΨ	\wedge	小小	小小	^₩	1
Zn	30	[Ar]	14	14	1	14	14	14

Absorbed Color	λ (nm)	Observed Color	λ (nm)
Violet	400	Green-yellow	560
Blue	450	Yellow	600
Blue-green	490	Red	620
Yellow-green	570	Violet	410
Yellow	580	Dark blue	430
Orange	600	Blue	450
Red	650	Green	520

Oxidation States of the first row Transition Metals (the most common ones are in bold types)

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
	+2	+2	+2	+2	+2	+2	+2	+1	+2
+3	+3	+3	+3	+3	+3	+3	+3	+2	
	+4	+4	+4	+4	+4	+4	+4		
		+5	+5	+5					
			+6	+6	+6				
				+7					

GENERAL PROPERTIES OF D-BLOCK ELEMENTS

- > ATOMIC & IONIC SIZE
- > IONIZATION ENTHALPY
- OXIDATION STATES OF D-BLOCK ELEMENTS
- COLORED IONS
- CATALYTIC PROPERTIES
- MAGNETIC PROPERTIES
- FORMATION OF COMPLEX COMPOUNDS
- FORMATION OF INTERSTITIAL COMPOUNDS