D- Block Elements ### d - Block elements | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|---------------------------|--------------------|---------------------------|--------------------------| | 21
Sc
44.96 | 22
Ti
47.87 | 23
V
50.94 | 24
Cr
52.00 | 25
Mn
54.94 | Fe
55.85 | 27
Co
58.93 | 28
Ni
58.68 | 29
Cu
63.55 | 30
Zn
65.39 | | 39
Y
88.91 | 40
Zr
91.22 | 41
Nb
92,97 | 42
Mo
92.94 | 43
TC
(98) | 44
Ru
701.07 | 45
Rh
102.91 | 46
Pd
706.42 | 47
Ag
107.87 | 48
Cd
712,41 | | 57-71 57
La
138.91 | 72
Hf
178.49 | 73
Ta
180.95 | 74
W
183.84 | 75
Re
186.21 | 76
Os
190.23 | 77
 r
 792.22 | 78
Pt
195.08 | 79
Au
796.97 | 80
Hg
200.59 | | AC
(227) | 104
Rf
(267) | 105
Db
(262) | 106
Sg
(263) | 107
Bh
(262) | 108
Hs
(265) | 109
Mt
(266) | Uun | Uuu | Uub | For Under graduate Student By: Dr. Monal Singh PPN (PG) College Kanpur #### THE DEDICABLE TABLE | | 1
IA | | | | | | THE | PE | RIO | DIC | CTA | BLE | | | | | | 18
VIIIA | |---|-------------------------------------|--------------------------------|---------------------------------|-------------------------------------|--------------------------------|---|----------------------------------|---------------------------------|---------------------------------|--|--|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|-------------------------------|-----------------------------------| | 1 | 1
1.008
Hydrogen | 2
IIA | | | | | | | | | | | 13
IIIA | 14
IVA | 15
VA | 16
VIA | 17
VIIA | 4.00
Helium | | 2 | Li
3
6,94
Lithium | Be
4
9.01
Beryllum | | 1 1.008 Hydrogen | - ATC | MBOL
OMIC NUME
OMIC WEIGH
ME | | | | (): | = ESTIMAT | TES | B 5 10.81 Seron | 6
12.01
Carbon | 7
14.01
Nitrogen | 8
16.00
Degen | F
9
19.00
Fluorine | Ne
10
20.18
Neon | | 3 | Na
11
22.99
Sodium | Mg
12
24.31
Magnesium | 3
IIIB | 4
IVB | 5
VB | 6
VIB | 7
VIIB | 8 | 9
VIIIB | 10 | 11
IB | 12
IIB | 13
26.98
Aluminum | \$1
14
28.09
Silicon | P
15
30.97
Phosphorus | \$
16
32.07
Suttur | C1
17
35.45
Chlorine | 18
39.95
Argon | | 4 | 19
39.10
Potassium | 20
40.08
Calcium | Sc
21
44.96
Scandium | Ti 22 47.88 Titanium | 23
50.94
Vanadium | 24
52.00
Chromium | Mn
25
54.94
Manganese | Fe 26 55.85 Iron | 27
58.93
Cobalt | Ni
28
58.69
Nickel | 29
63.55
Copper | Zn
30
65.39
Znc | Ga 31 69.72 Gallium | Ge
32
72.61
Germanium | AS
33
74.92
Arsenic | Se
34
78.96
Selenium | Br
35
79.90
Bromine | 36
83.80
Kryptor | | 5 | Rb
37
85.47
Rubidum | Sr
38
87.62
Strontium | 39
88.91
Yttrium | Zr
40
91.22
Zrconium | Nb
41
92.91
Nictium | Mo
42
95.94
Molybdenum | Tc
43
(97.9)
Technetium | Ru
44
101.07
Ruthenium | Rh
45
102.91
Rhodium | Pd
46
106.42
Palladium | Ag
47
107.87
Silver | Cd
48
112.41
Cadmium | 49
114.82
Indiam | 50
118.71
Tin | 5b
51
121.76
Antimony | Te
52
127.60
Tellurium | 53
126.90
lodine | 54
131.25
Xenon | | 6 | Cs
55
132.91
Cesium | Ba
56
137.33
Barium | 57
138.91
Lanthanum | Hf
72
178.49
Hattsium | Ta
73
180.95
Tantalam | 74
183.85
Tungsten | Re
75
186.21
Rhemum | Os
76
190.2
Osmium | Ir
77
192.22
Iridium | Pt
78
195.08
Plateaum | 79
196.97
Gold | Hg
80
200.59
Mercury | T1
81
204.38
Thallum | Pb
82
207.2
Lead | Bi
83
208.98
Bismuth | Po
84
(209)
Polonium | At
85
(210)
Assatine | 86
(222)
Radon | | 7 | Fr
87
223.02
Francium | Ra
88
226.03
Radium | A.C
89
227.03
Actinium | Rf
104
(261)
Referencement | 105
(262)
Dubnium | Sg
106
(263)
Seaborgium | Bh
107
(262)
Bohmuni | HS
108
(265)
Hessium | Mt
109
(266)
Meltnenum | Unnamed
Discovery
110
Nov. 1994 | Unnamed
Discovery
111
Nov. 1994 | Unnamed
Discovery
112
1996 | | Unnamed
Discovery
114
1999 | | Unnumed
Discovery
116
1999 | | Unname
Discover
118
1999 | | | ALKALI
METALS | ALKALI
EARTH
METALS | | | | | | | | | | | | | - | | HALOGENS | NOBLE | | | HAYDEN | | | LANTHANIDES | Ce
58
140.12
Cerum | Pr
59
140.91
Praeseodymium | Nd
80
144.24
Neodymium | Pm
61
(145)
Promethium | 5m
62
150.36
Samarium | Ett 63 152.97 Europium | Gd
64
157.25
Gadolinium | Tb 65 158.93 Terbium | Dy 66 162.50 Dysprosium | Ho
67
164.93
Holmium | Er
68
167.26
Erbium | Tm
69
168.93
Thulum | 70
173.04
Ytterbium | Tu
71
174.90
Listetius | | | MCNEIL | | | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | SPECIALTY 232.04 Thorium 92 238.03 Uranium 91 231.04 Protaciolum 93 237.05 94 (240) Philomum 95 243.06 Americium (247) Curlum 97 (248) Berkelium (251) 99 252.08 Einsteinium 100 257.10 Fermium 101 (257) 102 259.10 262.11 Nobelium Lawrencium 103 ACTINIDES www.hmpublishing.com O Hayden-McNeil Specialty Products ## **DEFINITION:-** - The elements of periodic table belonging to group 3 to 12 are known as d Block elements - ➤D- block elements lie in between S & P block elements & also referred as transition elements ## TRANSITION ELEMENTS Defined as in completely filled d orbitals in its ground state, having partially filled (n-I) d orbital ### **Electronic Configuration** #### **Electronic Arrangement** | Element | Z | | | | 3d | | | 45 | |---------|----|------|----------|----------|----------|----------|----------|----| | Sc | 21 | [Ar] | 1 | | | | | 小小 | | Ti | 22 | [Ar] | 1 | 1 | | | | 14 | | V | 23 | [Ar] | 1 | 1 | 1 | | | 1 | | Cr | 24 | [Ar] | 个 | 个 | 个 | 个 | 1 | 1 | | Mn | 25 | [Ar] | 1 | 个 | 个 | 1 | 1 | ^↓ | | Fe | 26 | [Ar] | 1 | 个 | 介 | 个 | 1 | 1 | | Co | 27 | [Ar] | ΛΨ | ΛΨ | 个 | 1 | 1 | 小小 | | Ni | 28 | [Ar] | 14 | 14 | 14 | 个 | 1 | 14 | | Cu | 29 | [Ar] | ΛΨ | \wedge | 小小 | 小小 | ^₩ | 1 | | Zn | 30 | [Ar] | 14 | 14 | 1 | 14 | 14 | 14 | | Absorbed
Color | λ (nm) | Observed
Color | λ (nm) | |-------------------|--------|-------------------|--------| | Violet | 400 | Green-yellow | 560 | | Blue | 450 | Yellow | 600 | | Blue-green | 490 | Red | 620 | | Yellow-green | 570 | Violet | 410 | | Yellow | 580 | Dark blue | 430 | | Orange | 600 | Blue | 450 | | Red | 650 | Green | 520 | ### Oxidation States of the first row Transition Metals (the most common ones are in bold types) | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | |----|----|----|----|----|----|----|----|----|----| | | +2 | +2 | +2 | +2 | +2 | +2 | +2 | +1 | +2 | | +3 | +3 | +3 | +3 | +3 | +3 | +3 | +3 | +2 | | | | +4 | +4 | +4 | +4 | +4 | +4 | +4 | | | | | | +5 | +5 | +5 | | | | | | | | | | +6 | +6 | +6 | | | | | | | | | | +7 | | | | | | #### GENERAL PROPERTIES OF D-BLOCK ELEMENTS - > ATOMIC & IONIC SIZE - > IONIZATION ENTHALPY - OXIDATION STATES OF D-BLOCK ELEMENTS - COLORED IONS - CATALYTIC PROPERTIES - MAGNETIC PROPERTIES - FORMATION OF COMPLEX COMPOUNDS - FORMATION OF INTERSTITIAL COMPOUNDS